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Abstract 

Conditional joint probability distribution functions 
V ( ¢ , , . . . ,  ~o, , IR, , . . . ,  R , , . . . ,  Rp) of any set of n 
phases given any set of p diffraction moduli are 
calculated. The distributions include terms up to 
order 1 / N  and involve both triplet and quartet contri- 
butions. Two types of formulae are derived, which 
may be considered as developments of two mathe- 
matical approaches described by Hauptman [Acta 
Cryst. (1975). A31,680-687] and by Giacovazzo [Acta 
Cryst. (1975). A31, 252-259; Acta Cryst. (1976). A32, 
91-99] for the estimation of the quartet invariants. 

I. Introduction 

The discovery (Hauptman & Karle, 1953) of the 
properties of the structure invariants and 
seminvariants has played a crucial role in the solution 
of the phase problem. Their estimation was the main- 
spring for the development of the joint probability 
distribution methods (Hauptman & Karle, 1953; Klug 
1958). Such methods rely on the idea that certain 
combinations of phases (i.e. the structure invariants 
and seminvariants) can be estimated when the related 
structure factors have their observed values. 

More recently, this point of view has been general- 
ized by the neighbourhood principle (Hauptman, 
1975, 1978) and by the representation method 
(Giacovazzo, 1977a, 1980a). Such contributions 
extended the range of application of direct methods; 
indeed, single n-phase structure invariants could be 
estimated via the overall prior information provided 
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by p moduli of structure factors, where p may be 
much larger than n. Asymptotically, p may coincide 
with the number of measured diffraction magnitudes. 
The standard technique is as follows. 

(i) The joint probability distribution function 

P ( ~ o , , . . . , ~ p , , , . . . , ~ p , R , , . . . , R p )  (1) 

is first calculated. 
(ii) The marginal distribution 

P(~o, , . . . ,  ~,, R , , . . . ,  R , , . . . ,  Rp) (2) 

with n < p  is derived. Accordingly, 

P(,pl, • • •, ~n, R 1 , . . . ,  Rn, • • . ,  Rp) 

= • . ,  

R l  , . . . , R , ,  . . . , R p )  d~o,+l . . .  d~p. 

(iii) The conditional distribution 

P(,p,, . . . , ~ , [ R , ,  . .. , Rp) (3) 

is derived, where ~ 1 , . . . ,  (p, are the phases that com- 
pose the n-phase structure invariant 

• = rpl + (p2+...+~o. 

that one wishes to estimate. 
(iv) The conditional distribution 

P( cI, I R , ,  . . . , R p) (4) 

is obtained, which provides the desired estimate of ~. 
In this paper we will focus our attention on distribu- 

tions (3) characterized by large values of n. The aim 
is not that of deriving estimates of single n-phase 
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902 THE JOINT PROBABILITY DISTRIBUTION OF ANY SET OF PHASES. I 

structure invariants or seminvariants [as from (4)], 
but that of obtaining joint probability distributions 
of any set of n phases given any set of p moduli. In 
particular, n may be the dimension of any subset of 
the measured reflections characterized by large values 
of R and/or  by any other useful condition. 

The proposed distributions will enclose terms up 
to order N -~. As shown in the following paper (Burla, 
Cascarano & Giacovazzo, 1992), the properties of 
such distributions are of great theoretical interest 
and can provide useful suggestions for practical 
applications. 

2. The distribution P ( ¢ a , . . . ,  ~, ,  I R a  , . . . , R p )  

in P1 and P1 

Deriving a general mathematical expression for the 
joint probability distribution (3) that includes terms 
up to order N -1 and is valid in all the space groups 
is not a trivial task. We will first focus our attention 
on the space groups P1 and P1; the results will then 
be extended to space groups of higher symmetry. We 
will follow the procedure used by Giacovazzo (1980b) 
to derive, from a seven-variate distribution, the condi- 
tional probability of a quartet phase given seven 
moduli and a variable number (up to seven) of phases. 
Giacovazzo's procedure enables the estimation of a 
quartet phase when, as well as moduli, phases of 
some cross terms are a priori known. Here we are not 
interested in triplet or quartet phases; we aim to 
describe a joint probability distribution of the 
individual phases. In particular: 

(i) The distributions P( tp~ , . . . ,  ~£>7, R x , . . . ,  R 7 )  

obtained by Hauptman and by Giacovazzo for the 
estimation of the quartet invariants will be recalled. 
Hauptman's (1975) results were obtained via the 
exponential form of the characteristic function while 
Giacovazzo's (1975, 1976) formulae were derived by 
means of the Gram-Charlier expansion of the charac- 
teristic function. The two distributions do not 
coincide and will be 6:~amined separately; they lead 
to different expressions for (3). 

(ii) Marginal and conditional distributions of 
P ( ~ 1 ,  • • • ,  (~07, R I ,  • • • ,  R 7 )  will be recalled to discover 
how the coefficients of the various terms in the distri- 
bution depend on the prior phase information. 

(iii) Generalized coefficients will then be derived 
and used for constructing a general mathematical 
expression for the distribution (3). Expressions for 
P1 and P1 will be separately described. 

(a) Space group P1. Extension of  the Hauptman 
formulation 

For brevity we will use the notation 

El = Eh, E 2  = Ek, E3 = El, E 4  = Eh+k+l, 

E5 m~ F__.h+k, E6= Eh+l ' E7 = Ek+l" 

Then, according to Hauptman (1975), we have 

P ( ¢ l , . . . ,  ~07, R 1 , . . . ,  R 7 )  

7 
= I-I [ ( R i / ~ ) e x p ( - R 2 ) ]  

i=1 

x exp {(2/NI/2)[R1R2R 5 cos (~l + ~ 2 -  ~5) 

+ R1R3R6 cos (~1 + ~3 - -  ~t)6) 

+ RIRaR 7 cos (tpl - -  ~t)4"3 t" ~ 7 )  

+ RERaR7 COS (~02"-~- ~3  --  ~t)7) 

W R 2 R 4 R  6 COS ( ~ 2 -  ~ 4  "3t- ~ 6 )  

+ RaR4R 5 cos (~P3 - -  ~t)4"q- ~ 5 ) ]  

- (2/ N)[  R1R2R6R7 cos (~Pl - ~P2 - ~6 "~- ~/~7) 

+ R1R3RsR7 cos (~l - ~P3 - ~P5 + q97) 

+ R1R4RsR6 cos (tpl + tp4- tp5 - tp6) 

+ R2R3RsR6 cos (~2 -  ~3 - -  ~ 5  ~- ~ 6 )  

+ R2R4RsR7 cos (~p2 + (~4- ~)5 - -  ~ 7 )  

-t- R 3 R 4 R 6 R  7 COS ( ~ 3  "~- ~ 4 - -  (~6--  ~ 7 )  

+ 2RIR2R3R 4 cos (cpl + tp2+ ~ 3  - -  ~t)4)]}. ( 5 )  

The following list shows basis and cross terms for 
each quartet involved in distribution (5): 

~t) 1 - -  ~t) 3 --  ~05 -1 t- ~07 

(~l ~1_ ~04 __ ~t)5 --  ~t)6 

~t)3 "[- ~ 4  --  ~t)6 - -  ~t)7 

F~_k, E3, E4; 

F-a,-i, E2, E4; 

E2h-k+l, E2, E3; 

Ek-~, El, E4; 

F-~+2k+l, El,  E3; 

F--'h+k+21, E l ,  E 2 ;  

E5, E 6 ,  E 7 .  

(6) 

It is easily seen from (6) that the first six quartets 
are characterized by two a priori known cross 
magnitudes: in (5), the numerical coefficient - 2 / N  is 
associated with them. The last quartet in (6) is charac- 
terized by three a priori known cross magnitudes and 
has coefficient - 4 / N .  Additional calculations, which 
for brevity are not shown here [refer to Giacovazzo 
(1977b) and Heinerman (1977)] indicate that: (i) in 
the marginal distribution P ( ~ , . . . ,  ~5, R ~ , . . . ,  Rs), 
where only one cross magnitude of the quartet (¢1 + 
¢ 2 + ¢ 3 - ¢ 4 )  is involved, the coefficient of cos (¢~+ 
(~2q-~t)3-- (~4)  in the exponential term is zero; (ii) in 
the marginal distribution P ( ¢ 1 , . . . ,  ¢4, R 1 , . . . ,  R 4 ) ,  

where no cross magnitudes of (¢~ + ¢2+ ¢ 3 -  ¢4) are 
involved, the coefficient of cos (¢1 + ¢2+ ¢ 3 -  ¢4) is 
2/N.  

The following rule may thus be obtained: in distri- 
butions of type (2), quartet terms with 3, 2, 1, 0 cross 
magnitudes a priori known in modulus and phase 
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have coefficients - 4 /  N, - 2 / N ,  O, 2 / N ,  respectively. 
Generally, the contribution to (2) due to the general 
quartet (~Pi+~Pj+q~t+¢m) may be expressed as 
(indices 5, 6, 7 of the following expression refer to 
the cross terms of the quartet) 

exp [ (2RiRjRtRm/ N ) (  w - w 5 -  w 6 -  w7) 

x c o s  (~0, + ~,j + ~,~+ ~)], 
where w = 1, w~-  0 always except when the cross 
magnitude R is a priori known. In this case, w, = 1. 

To see how a distribution of type (2) can be mod- 
elled when a modulus is known but its phase is 
unknown we consider the marginal distribution 

P ( ~ I , " ' ,  ~°6, R 1 , . . . ,  R 7 )  

7 
= I-I [(R,/1r)  e x p ( - g 2 ) ]  

i=1 

x exp {(2 /NI /E)[RIRER5 cos (¢1 + ¢ 2 -  ¢5) 

+ R1R3R 6 cos (q91 + ~3 -- ~06) 

+ R 2 R 4 R  6 c o s  ( ~ 2 -  ~4  "Jr- ~06) 

+ R3R4R5 cos (¢3 - ¢4+ ¢5)] 

- ( 2 / N ) [  R~ g4Rsg6  cos ( ¢~ + ¢ 4 -  ~P5 - ¢6) 

+ RER3RsR 6 COS ( ~ 2 -  ~3 -- ~t)5 "it- ~°6) 

+2RIR2R3R4  cos (¢~ + ¢2+ ¢ 3 -  ¢4)]} 

x Io(gTZ7) 

where 

Z7 (2/ 1/2 2 2 2 2 = N ) [R2R3+RiR4+2RIR2R3R4 

X COS (~01 "~- ~02"~" ~ 3 - -  ~ 4 ) ]  1/2 

R7 is a cross term of only one quartet in (5), say 
(~1  + ~2 "~- ~3 -- ~t)4)" The lack of information on ~7 
cancels from (5) the cosine terms in which ~7 is 
involved as a basis term, generates the new term 
Io(R7Z7) but does not modify the coefficient of 
COS (~01 + ~02 "~- ~03 -- ~04) in the exponential term. In con- 
clusion, the overall contribution to (2) arising from 
a quartet relationship is 

exp [ (2RiRjRtRm/ N ) (  w -  w s -  W 6 - -  W7) 

x cos (~i + ~j + Ct + Cm)] 

x Io(w'sRsZs)Io(w'6R6Z6)Io(w~R7ZT), 

where 

Z5 (2 /N ' /2 ) [  2 2 2 "2 • = R i R 2 + R a R 4 + 2 R 1 R 2 R 3 R 4  
X.-I 1/2 

XCOS (~01 "Jr- ~02 7t- ~03 -- ~04) ] , 

Z6 = (2 /N ' /2 ) [  R,R32 2 + R2R 2 + 2RIR2R3R4 

X COS (~1  "Jr- ~02"~ ~3 -- ~ 4 ) ]  1/2 

w" is always zero, except when R~ is a priori known 
and ~ is unknown; in this case w" = 1. 

We can now write the general expression of a 
distribution of type (2), 

P ( ~ ,  . . . , ~,~, R~, . . . , Rp) 

~ - f i [ ( R i / T r e x p ( - R 2 ) ] e x P [ i  =, tri p~le ts T i j l C O S t i j l  

+ E n i j l m ( W  - W 5 - W 6 - w7) COS qotm] 
quartets .I 

x I-I Io( w" R~Z, ) ,  (7) 

where 

Tot = 2RiRjRI/  N 1/2, 

tiff = ~Pi + ~Pj + ~Pt, 

B#tm = 2RiRjRtRm/ N, 

qiflm = qgi + ~Oj + q91 + ~m. 

The product of Io terms in (7) includes all the a priori 
known magnitudes with unknown phase value that 
are cross terms of some quartet in (7). The general 
conditional distribution P ( ~ I , . . . ,  ~ n l R , , . . . ,  Rp) 
may thus be written as 

P(~01 ,  . . . , q ~ n l R 1 , . . . , R p )  

= ( l / L )  exp [ )-'. T i j l C O S t i j  l 
triplets 

+ E Bijim ( W - W 5 - W 6 - W7) COS qijlm I 
quartets J 

xl-I Io(w" R , Z , ) ,  (8) 

where L is a scale factor whose value does not depend 
on the phase values. 

(b) Space group P1. Extension o f  the Green & 
Hauptman formulation 

According to Green & Hauptman (1976), 

P ( E 1 , . . . ,  E7)= (27r) -7/2 exp {-~(E 2 + . . .  + E 2) 

+ (1 /N ' /2 )  (E, E2E5 + E, E3E6 

+ E1E4E7 + E2E3E7 

+ E2E4E6 + E3E4Es) 

- ( 1 / N ) ( E ~  E2E6E 7 -..F E 1E3E5E 7 

+ EIE4EsE6+ E2E3E5E6 

+ E2E4EsE 7 + E3E4E6E 7 

+ 2 E ,  E2E3E4)}. (9) 

Data in (6) and considerations similar to those 
made for the space group P1 suggest the following 
rule: in distributions of type (2), quartet terms with 
3, 2, 1, 0 cross magnitudes a priori known in modulus 
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and phase have coefficients equal to - 2 / N ,  - 1 / N ,  0, 
l / N ,  respectively. Generally, the contribution of the 
quartet EiEjE~Em to (2) is 

e x p [ ( E ~ E ~ E t E , , / N ) ( w - w s - w 6 - w 7 ) ] ,  (10) 

where w = 1, w~ = 0 always except when the cross 
magnitude R, is a priori known; in this case, w~ = 1. 

To model a distribution of type (3) we first write 
(9) as P ( s l , . . . ,  s7, R t , . . . ,  R7), where si is the sign 
of E~, and we then calculate P ( S l , . . . ,  s7]R l , . . .  , R7) , 

P ( s l , . . . ,  s7, R 1 , . . . ,  R7) 

= (1/L) exp [ (1/N1/2)(s,s2ssR1R2R 5 + . . .  

+ s3s4ssR3R4Rs) 

- (1/N)(sls2s6s7Ri RzR6R7 + . . .  

-F 2sls2sss4R1R2R3R4)], (11) 

where L is a scaling factor whose value does not 
depend on the sign values. We now calculate the 
marginal distribution 

P ( s l , . . . ,  s6lR1, • • . ,  R7) 

= E P ( s , , . . . , s 7 1 R , , . . . , R 7 )  
S7 =-¢- l 

-~ ( l /L )  exp {(1/N1/2)(E1E2Es+ EIE3E 6 

+ E2 E4 E6 + E3 E4 Es) 

-- ( 1 / 2 N ) ( E I E 4 E s E 6 +  E2E3EsE6 

+ 2EtE2E3E4)} cosh (RsZ'5), 

where Z~ = (E~E2+ E 3 E 4 ) / N  U2. 
It is clear that the lack of information on s7 cancels 

from (11) the invariants in which E7 is not involved 
as a basis term, generates the new term cosh (RsZ'5) 
but does not modify the coefficient of E~E2E3E4 in 
the exponential term. In conclusion, we can write 

P ( s , , . . . , s ,  l R , , . . . ,  Rp) 

= ( 1 / L )  e x p [ ( 1 / N  1/2) ~ E~EjEt 
triplets 

+ ~, (EiEjEtE, , , /N)(w - w5 - w 6 -  w7) ] 
quartets 

! t x r i  cosh (w,,R,,Z,,),  (12) 

where 

Z'5 = ( E,E: + EtEm)/ N '/z 

Z'6 = ( E, Et + EjEm)/ N U2, 

Z~ = ( EjE, + E,E. ,) /  N '/2. 

The product in (12) includes all the a priori known 
magnitudes with unknown phase that are cross terms 
of some quartet in (12). We have w" = 0 except when 
R~ is a priori known and q~ is unknown; in this case 

! w, ,= l .  

(c) Distributions in pure exponential form 

In practical applications, distributions (8) and (12) 
may present some difficulties. In fact, when the num- 
bers of triplets and quartets considered in the for- 
mulae is high the exponent of the exponential func- 
tion may become a very large positive or negative 
number according to circumstances. Consequently, 
the multiplication of such an exponential function by 
the product of a large number of modified Bessel or 
hyperbolic cosine functions may be difficult to per- 
form. A more useful technique is the approximation 
of (8) and (12) in pure exponential form. If x is 
sufficiently small then 

Io(x) = 1 + x2/4"- exp (x2/4). (13) 

Hence (8) can be written in a pure exponential form, 

P( ~o,, . . . , ~o,, I R,  , . . . , Rp) 

= ( 1 / L ) e x p (  E TijlCOStql+ E 
\ triplets quartets 

where 

Qijlm COS qijlm ) 

(14) 

t 2 Qut,,, = Bi j tm[W+(WsRs-  ws) 
.+ t 2 t 2 ( w 6 R 6 -  w6) + ( w7R7 - w7)]. (15) 

Terms not dependent on the phase values are not 
emphasized; they merely affect the value of the scaling 
factor L. 

Instead of using (14), a further approximation of 
(8) (valid for any practical values of the Rs) may be 
obtained by following a procedure suggested by 
Giacovazzo, Camalli & Spagna (1989). Accordingly, 
each Io function in (8) is replaced as in the following: 

Io(w'sRsZs) = exp [ w'sa5 cos (¢, + ! j  + ¢1 + ¢,~)], 

Io(w~6R6Z6) "" exp [ W;O~ 6 COS (~t) i "1- ~0j "4- ~01 + ~0m) ] ,  

I0( w~ R7Z7) = exp [ w~a7 cos (q~, + q~j + ~Pz + ~P,,,) ], 

where as, a6, a7 satisfy the equations 

D~(as) = D~(2R,RjRs/  NI/2)D,(2R,R, , ,Rs/  N' /2) ,  

Dl(a6) = Dt(ZRiR,R6/NI/2)Da(ZRjR, , ,R6/N~/2) ,  

D,(a7) = Da(2RjR~RT/ N'/Z)D~(ZRiR,,,R7/ N '/2) 

and D~ = I1/Io is the ratio of the two modified Bessel 
functions of order 1 and 0, respectively. Again, terms 
not depending on the phase values are not empha- 
sized; they affect the value of the scale factor L. 
Equation (8) may thus be written in a pure exponen- 
tial form: 

P(tpl, • • •, ~p~ ] R 1 , . . . ,  Re) 

= (1 / L) exp ( Z rut cos tijt + 
\ triplets 

Z Q~,m cos qij,m), 
quartets 

(16) 
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where 

Q~,,,, = wBijlm a t- ( w~sot5 - BijlmWs) 

Jr ( Wt6016 - BijlmW6) Jr ( W~Ol 7 -- BijlmW7). (17) 

bility dis tr ibut ion of  type (2) is 

P (  , . . . , I R , ,  . . . , R , )  

"--" (1 / L) ~ 1 + E [ Tot cos tot L triplets 

(d) Extension of the Giacovazzo formulation 

According to Giacovazzo (1976), 

P ( ~ P , ,  • • • ,  ,p71R,,..., R7) 

- (1/L){ 1 + ( 2 / N ' / 2 ) [  R, 

+ R~R3R6 cos (~o~ + ~o3 

+ R~RaR7 cos (~Ol - (P4 

+ R2R3R7 cos (~o2+ ~o3 

R2R5 cos (~01 + (P2 - ~Ps) 

+ ~7) 

+ R 2 R 4 R 6  c o s  ( ~ 2  - ~t)4 "it" ~t)6) 

-t- R3R4R5 cos (~3 - ~4 -1- ~5)] 

+ ( 1 /  2 2 2 2 ( ~ , +  q~5) N)[R]R2R5 cos q~2- 

D2 D2 i~2 2(¢1 + ¢6) "~- J~l J~31~. 6 COS ~03 

D 2 D 2  i~2 + .-~--4--7 cos 2 ((p, - ~04+ ~7) 
D2D211~2  + --2--3.-7 cos 2 (~P2 Jr (~P3 -- ~7) 

D 2 D 2 D 2  2( tP2  --  (~4Jt - ~D6) "1L J~.2A~.41~. 6 COS 

D 2 D 2 D 2  + .-3*-4.-5 cos 2 ((P3 - tp4+ ~5)] 

+ ( 2 / N ) [  R~R:R6RT(1 + e3 + e4) 

X COS (~Pl - -  ~ P 2 -  ~P6 Jr (]:)7) 

+ R]R3RsR7(1 + e2 "Jr e4) 

+ R1R4RsR6(1 + e2+ e3) 

+ R2R3RsR6(1 + el + e4) 

+ R2R4RsR7(1 + e 1 + e3) 

+ 

+ 

X 

COS (~t) 1 - -  ~03 --  ~5"~" ~07) 

COS (q~l "q- q~4 --  (I~5 --  (~6) 

COS (~P2-- ~3  --  ~t)5 7t" ~ 6 )  

cos ((p2 + ~ 4 -  ~5 - ~7) 

R3R4R6R7(1 + e, + e2) cos ((p3 + (P4- (P6 - (P7) 

RIRERaR4(1 + es+  8 6 +  87) 

COS ( ~1 + (t02 "t- ~ 3  - -  ~P4)]}, ( 1 8 )  

2 where ei Ri - 1. The contr ibut ion of a generic quar- 
tet to (18) is therefore 

Bqlm( W Jr WSeS-t- W686-1- W787),  

where w = 1 and ws, w6, w7 are 0 or 1 according to 
whether  the cross magni tudes  Rs, R6, R7 are known 
or unknown,  respectively. Simple calculat ions show 
in addi t ion that  the lack of  informat ion on ~P7 does 
not modify  the coefficients of  the various quartet  
contr ibut ions but  only cancels from (18) the triplet  
and quartet  terms in which ~P7 is involved as a basis 
term. In conclusion,  a general  expression for a proba-  

where 

2 2 2 2t01 ] + (R iR jR t /N)  cos 

-t- ~ Q~tm cos qo,.. }. 
quartets ) 

(19) 

Q~tm = Bo,,(w + wse5+ w626-~- W7e7)" (20) 

Equat ion (19) may be approx imated  by the exponen-  
tial form 

¢ , I R , , . . . , R , )  

~--(1/L)exp( ~, TolCOSt,jt+ Z Q~tmCOSqu,m ). 
\ triplets quartets 

(21) 

The corresponding distr ibution in a cent rosymmetr ic  
space group is (see Giacovazzo,  1975) 

P ( s , ,  . . . , s ,  I R , ,  . . . , R p )  

"-(1/ L) exP [tri~et (EiE, E,/ N'/2) 

+ E (E, EsE, E. , /N) 
quartets 

X (W Jr W5E5Jr W626 Jr W727) j - (22) 

It must  be emphasized  that.  according to Cochran  
(1955). 

D1(Tol) = (cos (t0t)) (23) 

and.  according to Giacovazzo (1976). 

D,(Q~Im) = (COS ( q 0 , m ) ) ,  (24) 

where Dl(x)=Ii(x)/Io(x) is the ratio of  the two 
modified Bessel functions of  order  1 and 0, respec- 
tively. This observat ion provides a statistical meaning 
for the coefficients in (21). Practical use of  Q" revealed 
that  for small structures Q" can overest imate the 
cosine values of the positive est imated quartets.  A 
more carefully formula ted  probabil ist ic  theory 
(Giacovazzo,  1980b) suggests that  Q~tm as defined by 
(20) should be replaced by 

Q~lm = Bijtm(.W-b Wse5-t-  w626-~- w 7 8 7 ) / ( 1  Jr Zijlm), (25) 

where 

ZOlm = [ (e l e2+  e3e,)wses+ (e le3+ 82e4) W686 

Jr  ( E l e  4 + e2e3)w7e7]/2N. 

From now on we will always assume that  Q~-I,, is 
defined by (25). 
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3. Concluding remarks 
The probabilistic approaches for the estimation of 
quartet invariants in P1 and P1 by Hauptman and 
by Giacovazzo have been further developed to derive 
the joint probability distribution function (including 
terms up to order N -1) of n phases given p->n 
moduli. The formulae (14) and (21) are obtained. 

In (14) the weights w and w' suggest that a cross 
term of a quartet with large known modulus but 
unknown phase provides a positive contribution to 
Q [see (15)], while a negative contribution is provided 
by a cross term when both its modulus and its phase 
are known. According to (21), a cross term with 
known large modulus will provide a positive contribu- 
tion to Q" no matter whether the corresponding phase 
is known or not. Such behaviour should have striking 
consequences in practical applications. Indeed, as 
long as the largest [EJ values are phased during the 
phasing process, (14) and (21) will use such informa- 
tion in different ways. In particular, the positivity of 
the quartet term is expected to decrease in (14) and 
increase in (21). 

In conclusion, while the approaches of Hauptman 
and Giacovazzo produce nearly equivalent quartet 
estimates (Giacovazzo, Camalli & Spagna, 1989) 
when only moduli are a priori known, the two formal- 
isms lead to quite different estimates when applied 
to a situation in which a large number of phases are 

also known. This unexpected result will prove of large 
practical interest, as shown in the paper by Burla, 
Cascarano & Giacovazzo (1992), and suggests that 
the probabilistic quartet theory, as formulated so far, 
is not completely satisfactory. Indeed, the different 
mathematical approximations involved in the 
approaches of Hauptman and Giacovazzo are far 
from being insignificant if they cause such striking 
differences. 
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Abstract 

In the first paper in this series [Giacovazzo, Burla & 
Cascarano (1992). Acta Cryst. A48, 901-906], the 
conditional joint probability distribution function of 
n phases given p >-- n moduli was derived. The proper- 
ties of the/concluding formulae are checked here. It 
is found that the distribution is not maximized by the 
correct phases, mostly because of bias in the formulae. 

If the triplets are estimated via the P10 formula 
[Cascarar~o, Giacovazzo, Camalli, Spagna, Burla, 
Nunzi & Polidori (1984). Acta Cryst. A40, 278-283] 
instead of being estimated by the Cochran relation- 
ship [Cochran (1952). Acta Cryst. 5, 65-67], the situ- 
ation is remarkably improved but further improve- 
ments are needed. A practical procedure is also 
described that successfully uses phase relationships 
to solve difficult structures. 
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